Cybersecurity

Lesson Notes 1.2.1 - CIA Triad and AAA

CIA Triad

- Created from the three fundamental principles of Informational Technology:
 - Confidentiality
 - Integrity
 - Availability

CIA Triad - Confidentiality

- Access and privacy controls are designed to ensure only authorized users can access confidential information
- They include the principles of identification, authentication, and authorization
- Examples of authentication controls to protect include passwords, biometrics, PINs

CYBER.O

CIA Triad - Integrity

- Access controls ensure that information is not tampered with or modified
- An example of security control is the use of file hashes, checksums, digital signatures, etc.
- Attacks of integrity are the most dangerous attack as they are the hardest to detect and to deter

CYBER.O

CIA Triad - Availability

- Ensuring that services are available when needed to the people who need them
- Availability can be impacted by natural (fire, floods, hurricanes), environmental (power outage), or artificial (DDoS attack) events.
- Redundancy, recovery, and performance monitoring are crucial

Importance of the CIA Triad

- Provides a simple and understandable framework for developing and implementing security controls
- Organizations can effectively balance various security risks and prioritize their resources accordingly
- Flexible and can be applied to different types of information systems and organizations, regardless of size or industry.

CYBER.

Digital Forensics

- When it comes to forensic analysis with information and data, there must be non-repudiation, or no doubt that it was tampered with.
- The earliest state of the data, know as provenance must be available.

AAA Framework

- Used to understand security surrounding the accessibility of individuals
- Process of Identification passes:
 - Authentication
 - Authorization
 - Accounting

AAA Framework – Authenticating People

- Verifying claims of identity which is crucial for
 - Protecting sensitive information
 - Preventing unauthorized access
 - Maintaining security
- Examples:
 - Knowledge based methods
 - Passwords, pins, security questions
 - Possession based
 - Key cards, tokens, smart cards
 - Biometric
 - Fingerprint, face or voice recognition
 - Multi-factor Authentication
 - Combination of two or more listed above

AAA Framework – Authenticating Systems

- Verifying the identity of a device, computer, or application to ensure authorization to resources and other systems while preventing unauthorized access
- Credential-Based
 - Username and password, API keys
- Token-Based
 - Hardware or software tokens
- Biometric
 - Fingerprinting or behavioral metrics
- Mutual
 - Client and server authentication
- Zero-Trust Architecture

• Assumes no system is trustworthy

CYBER.ORG

AAA Framework – Authorization Models

- The set of rules and policies that govern who can access and what actions can they perform within a system
- Determined by several factors
 - System complexity
 - Data sensitivity
 - Compliance requirements
 - Management
 - Flexibility

Authorization Model Types

- Access Control Lists (ACL)
 - Assigns permissions directly to people or groups
 - Simple with smaller numbers, but can become complex with larger systems
- Role-Based Access Control (RBAC)
 - Assigns permissions based on roles and users are assigned these roles
 - Examples include administrators, guests, editors, etc.
- Attribute-Based Access Control (ABAC)
 - Assigns permissions based on attributes such as department, location, device type, time, etc.
 - Well-suited for complex systems with dynamic needs

Authorization Model Types cont'd

- Rule-Based Access Control (RuBAC)
 - Rules define access conditions, often expressed as if-then statements
 - Allows specific security requirements
- Mandatory Access Control (MAC)
 - Enforces restrictions based on security labels to users and resources
 - Centrally controlled and often used in high-security environments
 - High protection but less flexible for user needs

